Coflow is a recently proposed network abstraction to capture communication patterns in data centers. The coflow scheduling problem in large data centers is one of the most important $NP$-hard problems. Previous research on coflow scheduling focused mainly on the single-switch model. However, with recent technological developments, this single-core model is no longer sufficient. This paper considers the coflow scheduling problem in identical parallel networks. The identical parallel network is an architecture based on multiple network cores running in parallel. Coflow can be considered as divisible or indivisible. Different flows in a divisible coflow can be transmitted through different network cores. Considering the divisible coflow scheduling problem, we propose a $(6-\frac{2}{m})$-approximation algorithm with arbitrary release times, and a $(5-\frac{2}{m})$-approximation without release time, where $m$ is the number of network cores. On the other hand, when coflow is indivisible, we propose a $(4m+1)$-approximation algorithm with arbitrary release times, and a $(4m)$-approximation without release time.
翻译:网络流是最近提议用来捕捉数据中心通信模式的网络抽取。 大型数据中心的联流调度问题是最重要的美元- 硬性问题之一。 以前关于联流调度的研究主要集中在单开关模式上。 但是,由于最近的技术发展, 这一单一核心模式已不再足够。 本文考虑了相同平行网络的联流调度问题。 相同的平行网络是一个基于多个网络核心平行运行的架构。 共流可以被视为可分化或不可分割的。 可分化的联流中的不同流量可以通过不同的网络核心传输。 考虑到可分化的联流调度问题, 我们建议使用一个( 6\ frac{2 ⁇ m}) $- 近似协调算法, 任意发布时间为美元( 5\ frac{2 ⁇ } 美元) 和一个$( 5\\ frac{2 ⁇ } $- 近似不发布时间, 其中美元是网络核心的数量。 另一方面, 当串流是不可分割时, 我们提议使用一个( 4m+1美元) 和 美元- a assom- approcivlection exion time time.