Road accidents involving autonomous vehicles commonly occur in situations where a (pedestrian) obstacle presents itself in the path of the moving vehicle at very sudden time intervals, leaving the robot even lesser time to react to the change in scene. In order to tackle this issue, we propose a novel algorithmic implementation that classifies the intent of a single arbitrarily chosen pedestrian in a two dimensional frame into logic states in a procedural manner using quaternions generated from a MediaPipe pose estimation model. This bypasses the need to employ any relatively high latency deep-learning algorithms primarily due to the lack of necessity for depth perception as well as an implicit cap on the computational resources that most IoT edge devices present. The model was able to achieve an average testing accuracy of 83.56% with a reliable variance of 0.0042 while operating with an average latency of 48 milliseconds, demonstrating multiple notable advantages over the current standard of using spatio-temporal convolutional networks for these perceptive tasks.


翻译:针对自主驾驶车辆在遇到突然出现的行人障碍物时的应对不及时,我们提出了一种新颖的算法实现方式,通过基于MediaPipe姿势估计模型生成的四元数,以过程化的方式将二维框架中单个行人的意图分类为逻辑状态。这种算法实现方式无需使用任何相对较高延迟的深度学习算法,主要是由于深度感知的不必要以及大多数物联网边缘设备计算资源上的隐式限制。该模型在操作时的平均延迟为48毫秒,并且能够实现平均测试精度83.56%,方差可靠性为0.0042,表现出多个值得注意的优点,相较于目前使用时空卷积网络进行感知任务的标准。

0
下载
关闭预览

相关内容

【2022新书】图像分割:原理、技术和应用,336页pdf
专知会员服务
115+阅读 · 2022年10月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月21日
Arxiv
19+阅读 · 2022年10月6日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关VIP内容
【2022新书】图像分割:原理、技术和应用,336页pdf
专知会员服务
115+阅读 · 2022年10月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员