Optimal transport (OT) is a popular and powerful tool for comparing probability measures. However, OT suffers a few drawbacks: (i) input measures required to have the same mass, (ii) a high computational complexity, and (iii) indefiniteness which limits its applications on kernel-dependent algorithmic approaches. To tackle issues (ii)--(iii), Le et al. (2022) recently proposed Sobolev transport for measures on a graph having the same total mass by leveraging the graph structure over supports. In this work, we consider measures that may have different total mass and are supported on a graph metric space. To alleviate the disadvantages (i)--(iii) of OT, we propose a novel and scalable approach to extend Sobolev transport for this unbalanced setting where measures may have different total mass. We show that the proposed unbalanced Sobolev transport (UST) admits a closed-form formula for fast computation, and it is also negative definite. Additionally, we derive geometric structures for the UST and establish relations between our UST and other transport distances. We further exploit the negative definiteness to design positive definite kernels and evaluate them on various simulations to illustrate their fast computation and comparable performances against other transport baselines for unbalanced measures on a graph.


翻译:最佳运输(OT)是比较概率度量的流行和强大的工具。然而,OT有一些缺点:(一) 要求投入措施,其质量必须相同,(二) 计算复杂程度高,(三) 无限性,限制其应用于依赖内核的算法方法。为了解决问题(二)-(三),Le等人(2022)最近提议Sobolev运输,在图中测量总质量相同,利用图形结构而不是支持。在这项工作中,我们考虑可能具有不同总质量和在图形度空间上得到支持的措施。为了减轻OT的缺点(一)-(三),我们建议采用新颖和可伸缩的办法,扩大Sobolev运输范围,使之适用于可能具有不同总质量的不平衡的计算方法。我们表明,拟议的Sobolev运输(UST)接受一种封闭式的快速计算公式,而且也是否定的。此外,我们为UST得出几何结构,并在我们的AS和其他运输距离之间建立关系。我们进一步利用负面的确定性精确性方法,以设计精确性基准和测测算。</s>

0
下载
关闭预览

相关内容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移动Ad hoc和传感器系统IEEE国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/mass/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
27+阅读 · 2023年2月10日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员