We develop an anomaly detection method when systematic anomalies are affecting control systems at the input and/or output stages. The method allows anomaly-free inputs (i.e., those before contamination) to originate from a wide class of stationary random sequences, thus opening up the most diverse possibilities for its applications. To show how the method works on data, and how to interpret results and make decisions, we provide an extensive numerical experiment with anomaly-free inputs following ARMA time series under various contamination scenarios.


翻译:当系统性异常现象影响输入和/或输出阶段的控制系统时,我们开发了一种异常现象检测方法,该方法允许无异常现象输入(即污染前输入)来自一系列广泛的固定随机序列,从而为其应用打开了最多样化的可能性。为了显示该方法如何在数据上运作,以及如何解释结果和作出决定,我们在各种污染情景下对ARMA时间序列后无异常现象输入进行了广泛的数字实验。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
已删除
将门创投
12+阅读 · 2018年6月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
1+阅读 · 2021年1月20日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
已删除
将门创投
12+阅读 · 2018年6月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
1+阅读 · 2021年1月20日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
5+阅读 · 2017年12月14日
Top
微信扫码咨询专知VIP会员