We develop an anomaly detection method when systematic anomalies are affecting control systems at the input and/or output stages. The method allows anomaly-free inputs (i.e., those before contamination) to originate from a wide class of stationary random sequences, thus opening up the most diverse possibilities for its applications. To show how the method works on data, and how to interpret results and make decisions, we provide an extensive numerical experiment with anomaly-free inputs following ARMA time series under various contamination scenarios.


翻译:当系统性异常现象影响输入和/或输出阶段的控制系统时,我们开发了一种异常现象检测方法,该方法允许无异常现象输入(即污染前输入)来自一系列广泛的固定随机序列,从而为其应用打开了最多样化的可能性。为了显示该方法如何在数据上运作,以及如何解释结果和作出决定,我们在各种污染情景下对ARMA时间序列后无异常现象输入进行了广泛的数字实验。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
12+阅读 · 2018年6月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Rethinking Domain Generalization Baselines
Arxiv
0+阅读 · 2021年1月22日
Arxiv
1+阅读 · 2021年1月20日
Arxiv
11+阅读 · 2020年12月2日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
12+阅读 · 2018年6月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Rethinking Domain Generalization Baselines
Arxiv
0+阅读 · 2021年1月22日
Arxiv
1+阅读 · 2021年1月20日
Arxiv
11+阅读 · 2020年12月2日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
5+阅读 · 2017年12月14日
Top
微信扫码咨询专知VIP会员