In an emergency room (ER) setting, stroke triage or screening is a common challenge. A quick CT is usually done instead of MRI due to MRI's slow throughput and high cost. Clinical tests are commonly referred to during the process, but the misdiagnosis rate remains high. We propose a novel multimodal deep learning framework, DeepStroke, to achieve computer-aided stroke presence assessment by recognizing patterns of minor facial muscles incoordination and speech inability for patients with suspicion of stroke in an acute setting. Our proposed DeepStroke takes one-minute facial video data and audio data readily available during stroke triage for local facial paralysis detection and global speech disorder analysis. Transfer learning was adopted to reduce face-attribute biases and improve generalizability. We leverage a multi-modal lateral fusion to combine the low- and high-level features and provide mutual regularization for joint training. Novel adversarial training is introduced to obtain identity-free and stroke-discriminative features. Experiments on our video-audio dataset with actual ER patients show that DeepStroke outperforms state-of-the-art models and achieves better performance than both a triage team and ER doctors, attaining a 10.94% higher sensitivity and maintaining 7.37% higher accuracy than traditional stroke triage when specificity is aligned. Meanwhile, each assessment can be completed in less than six minutes, demonstrating the framework's great potential for clinical translation.


翻译:在急诊室(ER)设置中,中风三角或筛查是一项共同的挑战。由于磁共振缓慢的吞吐量和高成本,通常会进行快速CT而不是磁共振,因为磁共振缓慢的吞吐量和高成本。临床测试通常在此过程中被提及,但误诊率仍然很高。我们建议采用新的多式深层次学习框架DeepStroke,通过识别在急性环境中怀疑中风的病人的轻微面部肌肉肌肉不协调及说话能力模式,实现计算机辅助中风出场率评估。我们提议的深吸盘在中风期间使用一分钟的面部视频数据和音频数据,而不是磁共振动性数据,用于局部面部麻痹检测和全球言语失常分析。我们采用了转移学习,以减少面部偏差,提高一般性率。我们提出了一种多式的多式横向融合,将低和高层次特征结合起来,为联合培训提供相互规范。引入了新式的对抗性培训,以获得没有身份和中风相偏差的特征。我们的视频数据集成,与实际的ER级病人进行实验表明,De Stro Stroke-trade-tradeforformexmexformexform-lax 10-rmaxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2021年3月25日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员