Yes - This study investigates the impact of commonplace lossy image compression on face recognition algorithms with regard to the racial characteristics of the subject. We adopt a recently proposed racial phenotype-based bias analysis methodology to measure the effect of varying levels of lossy compression across racial phenotype categories. Additionally, we determine the relationship between chroma-subsampling and race-related phenotypes for recognition performance. Prior work investigates the impact of lossy JPEG compression algorithm on contemporary face recognition performance. However, there is a gap in how this impact varies with different race-related inter-sectional groups and the cause of this impact. Via an extensive experimental setup, we demonstrate that common lossy image compression approaches have a more pronounced negative impact on facial recognition performance for specific racial phenotype categories such as darker skin tones (by up to 34.55\%). Furthermore, removing chroma-subsampling during compression improves the false matching rate (up to 15.95\%) across all phenotype categories affected by the compression, including darker skin tones, wide noses, big lips, and monolid eye categories. In addition, we outline the characteristics that may be attributable as the underlying cause of such phenomenon for lossy compression algorithms such as JPEG.
翻译:是的 - 本研究调查了常见失落图像压缩对与该主题种族特征有关的面部识别算法的影响。 我们最近建议采用基于种族苯型的种族偏差分析方法, 以衡量不同种族苯型类别不同程度的失落压缩的影响。 此外, 我们确定染色- 子抽样和与种族有关的确认性能类型之间的关系。 先前的工作调查了失落 JPEG压缩算法对当代面部识别性能的影响。 然而, 在这种影响与不同种族相关部门间组别以及这种影响的原因不同方面存在着差异。 我们通过一个广泛的实验设置, 显示常见的失落图像压缩方法对特定种族型类的面部位识别性效果产生更明显的负面影响, 如深色皮肤( 至34. 55 ⁇ )。 此外, 在压缩时去除染色色- 子压缩算法会提高受压缩影响的所有型别之间的虚假匹配率( 至15.95 ⁇ ) 。 此外, 包括深色皮肤、宽鼻子、大唇、大唇、大嘴、以及作为核心原因的缩算法特性, 也成为了压缩GEG的分类的缩缩缩缩缩算。