In this paper we study the problem of constructing spanners in a local manner, specifically in the Local Computation Model proposed by Rubinfeld et al. (ICS 2011). We provide an LCA for constructing $(2r-1)$-spanners with $\widetilde{O}(n^{1+1/r})$ edges and probe complexity of $\widetilde{O}(n^{1-1/r})$ $r \in \{2,3\}$, where $n$ denotes the number of vertices in the input graph. Up to polylogarithmic factors, in both cases the stretch factor is optimal (for the respective number of edges). In addition, our probe complexity for $r=2$, i.e., for constructing $3$-spanner is optimal up to polylogarithmic factors. Our result improves over the probe complexity of Parter et al. (ITCS 2019) that is $\widetilde{O}(n^{1-1/2r})$ for $r \in \{2,3\}$. For general $k\geq 1$, we provide an LCA for constructing $O(k^2)$-spanners with $\tilde{O}(n^{1+1/k})$ edges on expectation whose probe complexity is $O(n^{2/3}\Delta^2)$. This improves over the probe complexity of Parter et al. that is $O(n^{2/3}\Delta^4)$.
翻译:在本文中,我们研究了以当地方式建造隔热器的问题,特别是在Rubinfeld等人提议的当地计算模型(ICS 2011)中。我们提供了一个LCA,用于用$(全局){O}(n ⁇ 1+1/r})来建造(2)美元隔热器,并探究$(全局){O}(n ⁇ 1-1/r})的复杂度。我们的结果比Parter 和 al.(ITS 2019)的复杂度有所改进,其中美元表示输入图中的复杂度。在两种情况下,伸缩系数是最佳的(对相应边缘数而言)。此外,我们为$(2r-1)美元隔热器建造($=2美元),也就是说,我们建造3美元隔热器的复杂度与多元性系数相比是最佳的。(ITS 2019), 美元全局{{{{{%1/2}(n}(n)-1/2}(r/2r}我们为$(美元)的复杂度提供(美元)______________美元)。