In maximum-likelihood quantum state tomography, both the sample size and dimension grow exponentially with the number of qubits. It is therefore desirable to develop a stochastic first-order method, just like stochastic gradient descent for modern machine learning, to compute the maximum-likelihood estimate. To this end, we propose an algorithm called stochastic mirror descent with the Burg entropy. Its expected optimization error vanishes at a $O ( \sqrt{ ( 1 / t ) d \log t } )$ rate, where $d$ and $t$ denote the dimension and number of iterations, respectively. Its per-iteration time complexity is $O ( d^3 )$, independent of the sample size. To the best of our knowledge, this is currently the computationally fastest stochastic first-order method for maximum-likelihood quantum state tomography.
翻译:在最大可能性量子状态断层法中,样本大小和尺寸随qubit数量成倍增长。 因此,有必要开发一种随机第一阶方法, 就像用于现代机器学习的随机梯度梯度脱落, 以计算最大相似度估计值。 为此, 我们建议使用一种算法, 称为 Burg entropy 的随机镜下降。 其预期优化误差会以$( \ qrt{ ( 1 / t) d\log t } ) 的速率消失, 即美元和美元分别表示迭代的尺寸和数量。 其每次时间的复杂性是 $O ( d 3 ), 与样本大小无关。 据我们所知, 这是目前对最大相似量子量测的计算速度最快的随机第一阶法 。