As various databases of facial expressions have been made accessible over the last few decades, the Facial Expression Recognition (FER) task has gotten a lot of interest. The multiple sources of the available databases raised several challenges for facial recognition task. These challenges are usually addressed by Convolution Neural Network (CNN) architectures. Different from CNN models, a Transformer model based on attention mechanism has been presented recently to address vision tasks. One of the major issue with Transformers is the need of a large data for training, while most FER databases are limited compared to other vision applications. Therefore, we propose in this paper to learn a vision Transformer jointly with a Squeeze and Excitation (SE) block for FER task. The proposed method is evaluated on different publicly available FER databases including CK+, JAFFE,RAF-DB and SFEW. Experiments demonstrate that our model outperforms state-of-the-art methods on CK+ and SFEW and achieves competitive results on JAFFE and RAF-DB.


翻译:由于过去几十年中各种面部表达式数据库的可访问性已经形成,因此,面部表现识别(FER)任务引起了许多兴趣,现有数据库的多种来源为面部识别任务提出了若干挑战,这些挑战通常由神经网络(CNN)结构处理。与CNN模型不同,最近提出了基于关注机制的变异模型,以完成视觉任务。变异器的主要问题之一是需要大量的培训数据,而大部分FER数据库与其他视觉应用相比是有限的。因此,我们在本文件中提议,与FREF任务的挤压和Excucation(SE)块一起学习一个视觉变异器。拟议方法在各种公开的FER数据库(包括CK+、JAFFE、RAF-DB和SFEW)上进行评估。实验表明,我们的模型在CK+和SFEW方面超越了最新技术方法,在JAFFFFE和RA-DB上取得了竞争性的成果。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年7月30日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
44+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Arxiv
19+阅读 · 2021年4月8日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Stock Chart Pattern recognition with Deep Learning
Arxiv
6+阅读 · 2018年8月1日
VIP会员
Top
微信扫码咨询专知VIP会员