People post their opinions and experiences on social media, yielding rich databases of end-users' sentiments. This paper shows to what extent machine learning can analyze and structure these databases. An automated data analysis pipeline is deployed to provide insights into user-generated content for researchers in other domains. First, the domain expert can select an image and a term of interest. Then, the pipeline uses image retrieval to find all images showing similar content and applies aspect-based sentiment analysis to outline users' opinions about the selected term. As part of an interdisciplinary project between architecture and computer science researchers, an empirical study of Hamburg's Elbphilharmonie was conveyed. Therefore, we selected 300 thousand posts with the hashtag \enquote{\texttt{hamburg}} from the platform Flickr. Image retrieval methods generated a subset of slightly more than 1.5 thousand images displaying the Elbphilharmonie. We found that these posts mainly convey a neutral or positive sentiment towards it. With this pipeline, we suggest a new semantic computing method that offers novel insights into end-users opinions, e.g., for architecture domain experts.
翻译:人们在社交媒体上发表自己的观点和经验,在终端用户的情感上产生丰富的数据库。 本文展示了机器学习能够对这些数据库进行分析和结构的程度。 自动数据分析管道被部署用于为其他领域的研究人员提供用户生成的内容的洞察力。 首先, 域专家可以选择一个图像和感兴趣的术语。 然后, 管道使用图像检索来查找所有显示类似内容的图像, 并应用基于侧面的情绪分析来概述用户对选定术语的看法。 作为建筑和计算机科学研究者之间一个跨学科项目的一部分, 对汉堡的Elbphillhomonie进行了一项实验性研究。 因此, 我们从平台Flickr 中选择了30万个带有标签 \ enquotte {hamburg 的插页。 图像检索方法生成了超过1.5万个显示Elbphillharmonie 的图像。 我们发现这些插图主要是向它传递中性或正面的情绪。 通过这个管道, 我们建议一种新的语义计算方法, 提供对终端用户观点的新见解, 例如, 用于建筑域专家 。