Knitting is an effective technique for producing complex three-dimensional surfaces owing to the inherent flexibility of interlooped yarns and recent advances in manufacturing providing better control of local stitch patterns. Fully yarn-level modelling of large-scale knitted membranes is not feasible. Therefore, we use a two-scale homogenisation approach and model the membrane as a Kirchhoff-Love shell on the macroscale and as Euler-Bernoulli rods on the microscale. The governing equations for both the shell and the rod are discretised with cubic B-spline basis functions. For homogenisation we consider only the in-plane response of the membrane. The solution of the nonlinear microscale problem requires a significant amount of time due to the large deformations and the enforcement of contact constraints, rendering conventional online computational homogenisation approaches infeasible. To sidestep this problem, we use a pre-trained statistical Gaussian Process Regression (GPR) model to map the macroscale deformations to macroscale stresses. During the offline learning phase, the GPR model is trained by solving the microscale problem for a sufficiently rich set of deformation states obtained by either uniform or Sobol sampling. The trained GPR model encodes the nonlinearities and anisotropies present in the microscale and serves as a material model for the membrane response of the macroscale shell. The bending response can be chosen in dependence of the mesh size to penalise the fine out-of-plane wrinkling of the membrane. After verifying and validating the different components of the proposed approach, we introduce several examples involving membranes subjected to tension and shear to demonstrate its versatility and good performance.
翻译:Knitting 是一种生产复杂的三维表面的有效技术, 这是因为内脏线条的内在灵活性, 以及最近制造业在更好地控制本地缝纫模式方面的进步。 完全的线性级大规模针织膜膜建模不可行。 因此, 我们使用两种规模的同质化方法, 并模拟膜膜作为宏观规模的Kirchhoff- Love 外壳, 以及作为微尺度的Euler- Bernoulli 棒。 罐壳和棒的正方程式, 与立方B- spline基功能分离。 为了同质化, 我们只考虑membrane在平面图中的反应。 由于大规模变形和接触限制的强制, 需要大量时间来解决非线性线性微量级问题, 使常规的在线计算同质化方法变得可行。 为了回避这一问题, 我们使用一种事先经过训练的统计性高压进程回归模型模型模型模型模型模型模型模型模型模型, 来绘制宏观规模的微缩缩缩图, 在离线阶段里, 我们经过训练的GPR 的模型演示的模型的模型演示的模型,, 演示的模型的模型的模型的模型, 将演示的模型的模型的模型演示的模型的模型的模型的模型的模型的模型的模型的模型的变变的变的变的变的变的变的模型的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的模型, 。