Accurate retinal vessel segmentation is a challenging problem in color fundus image analysis. An automatic retinal vessel segmentation system can effectively facilitate clinical diagnosis and ophthalmological research. Technically, this problem suffers from various degrees of vessel thickness, perception of details, and contextual feature fusion. For addressing these challenges, a deep learning based method has been proposed and several customized modules have been integrated into the well-known encoder-decoder architecture U-net, which is mainly employed in medical image segmentation. Structurally, cascaded dilated convolutional modules have been integrated into the intermediate layers, for obtaining larger receptive field and generating denser encoded feature maps. Also, the advantages of the pyramid module with spatial continuity have been taken, for multi-thickness perception, detail refinement, and contextual feature fusion. Additionally, the effectiveness of different normalization approaches has been discussed in network training for different datasets with specific properties. Experimentally, sufficient comparative experiments have been enforced on three retinal vessel segmentation datasets, DRIVE, CHASEDB1, and the unhealthy dataset STARE. As a result, the proposed method outperforms the work of predecessors and achieves state-of-the-art performance in Sensitivity/Recall, F1-score and MCC.


翻译:为了应对这些挑战,提出了一种深层次的学习方法,并将若干定制模块纳入众所周知的编码器脱coder U-net结构中,主要用于医学图像分割。从结构上看,已经将分层化的相层变异模块纳入了中间层,以获得更大的可接收场和生成更稠密的编码地貌图。此外,为了应对这些挑战,还采取了具有不同程度的船体厚度、对细节的认知和背景地貌的融合,从技术上讲,这一问题具有不同程度的船舶厚度、对细节的认知和背景地貌的融合。此外,在对具有具体特性的不同数据集进行网络培训时,讨论了不同正常化方法的有效性。试验性地说,已经对三个复流式船舶分解数据集、DRIVE、CHASEDD1和不健康的数据集进行了充分的比较试验,以获得更大的可接收场和生成更密集的编码地标地貌图。此外,还采用了具有空间连续性的金字形模块的优势,以多层次感知、细度和背景特征融合为结果,拟议的演算了Startal-CREAR1。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
4+阅读 · 2018年6月1日
VIP会员
相关资讯
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员