In conversational settings, individuals exhibit unique behaviors, rendering a one-size-fits-all approach insufficient for generating responses by dialogue agents. Although past studies have aimed to create personalized dialogue agents using speaker persona information, they have relied on the assumption that the speaker's persona is already provided. However, this assumption is not always valid, especially when it comes to chatbots utilized in industries like banking, hotel reservations, and airline bookings. This research paper aims to fill this gap by exploring the task of Speaker Profiling in Conversations (SPC). The primary objective of SPC is to produce a summary of persona characteristics for each individual speaker present in a dialogue. To accomplish this, we have divided the task into three subtasks: persona discovery, persona-type identification, and persona-value extraction. Given a dialogue, the first subtask aims to identify all utterances that contain persona information. Subsequently, the second task evaluates these utterances to identify the type of persona information they contain, while the third subtask identifies the specific persona values for each identified type. To address the task of SPC, we have curated a new dataset named SPICE, which comes with specific labels. We have evaluated various baselines on this dataset and benchmarked it with a new neural model, SPOT, which we introduce in this paper. Furthermore, we present a comprehensive analysis of SPOT, examining the limitations of individual modules both quantitatively and qualitatively.


翻译:在对话环境中,个人表现出独特的行为,使得“一种适用于所有人”的方法对话代理人的生成回答是不充分的。虽然以前的研究旨在使用说话人个人特征信息创建个性化的对话代理人,但它们依赖于假设说话人的个人特征已经提供。然而,这个假设并不总是有效的,特别是当涉及到用于银行、酒店预订和航空预定等行业的聊天机器人时。本研究旨在填补这个空白,探索了会话中的说话者个人特征识别(Speaker Profiling in Conversations, SPC)任务。SPC的主要目标是为对话中出现的每个个人说话者生成一个个人特征摘要。为了实现这一目标,我们将任务分为三个子任务:个人特征发现、个人特征类型识别和个人特征值提取。给定一个对话,第一个子任务旨在识别包含个人特征信息的所有话语。其次,第二个子任务评估这些话语,以确定它们所包含的个人特征信息类型,而第三个子任务则为每个已识别类型识别特定的个人特征值。为了解决SPC任务,我们创建了一个新的数据集,名为SPICE,该数据集附带特定标签。我们在此数据集上评估了各种基线,并使用我们在本文中介绍的新神经模型SPOT来对其进行基准测试。此外,我们对SPOT进行了全面分析,定量和定性地考察了单个模块的限制。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月5日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员