We propose a general framework for finding the ground state of many-body fermionic systems by using feed-forward neural networks. The anticommutation relation for fermions is usually implemented to a variational wave function by the Slater determinant (or Pfaffian), which is a computational bottleneck because of the numerical cost of $O(N^3)$ for $N$ particles. We bypass this bottleneck by explicitly calculating the sign changes associated with particle exchanges in real space and using fully connected neural networks for optimizing the rest parts of the wave function. This reduces the computational cost to $O(N^2)$ or less. We show that the accuracy of the approximation can be improved by optimizing the "variance" of the energy simultaneously with the energy itself. We also find that a reweighting method in Monte Carlo sampling can stabilize the calculation. These improvements can be applied to other approaches based on variational Monte Carlo methods. Moreover, we show that the accuracy can be further improved by using the symmetry of the system, the representative states, and an additional neural network implementing a generalized Gutzwiller-Jastrow factor. We demonstrate the efficiency of the method by applying it to a two-dimensional Hubbard model.
翻译:我们提出一个总框架,通过使用向导神经网络寻找许多体形风化系统的地面状态。 发酵的反适应关系通常由Slater 决定因素(或Pfaffian)实施, 这是一种计算瓶颈, 因为它是计算性的瓶颈, 因为它的粒子耗资为$O(N)3美元。 我们绕过这个瓶颈, 方法是明确计算与实际空间的粒子交换有关的标志变化, 并利用完全连接的神经网络优化波函数的其余部分。 这样可以将计算成本降低到$O(N)2美元或更少。 我们表明, 通过优化能源与能源本身同时使用的“ 变异性”, 近距离的准确性可以提高。 我们还发现, 蒙特卡洛采样的重新加权方法可以稳定计算结果。 这些改进可以适用于基于变异性蒙特卡洛方法的其他方法。 此外, 我们表明,通过使用系统、 代表状态的对称法, 以及一个实施通用的 Gutzwor- Jast 格式效率的附加的神经网络, 可以进一步提高准确性。