In this paper, we present a consensus-based decentralized multi-robot approach to reconstruct a discrete distribution of features, modeled as an occupancy grid map, that represent information contained in a bounded planar 2D environment, such as visual cues used for navigation or semantic labels associated with object detection. The robots explore the environment according to a random walk modeled by a discrete-time discrete-state (DTDS) Markov chain and estimate the feature distribution from their own measurements and the estimates communicated by neighboring robots, using a distributed Chernoff fusion protocol. We prove that under this decentralized fusion protocol, each robot's feature distribution converges to the ground truth distribution in an almost sure sense. We verify this result in numerical simulations that show that the Hellinger distance between the estimated and ground truth feature distributions converges to zero over time for each robot. We also validate our strategy through Software-In-The-Loop (SITL) simulations of quadrotors that search a bounded square grid for a set of visual features distributed on a discretized circle.
翻译:在本文中,我们展示了一种基于共识的分散式多机器人方法,用于重建不同特征的离散分布,这种分布模式以占用网格图为模型,代表着封闭式平面 2D 环境中所含的信息,例如用于导航的视觉提示或与物体探测有关的语义标签。机器人根据由离散离散状态(DTDS) Markov 组成的随机行走模型来探索环境,并使用分布式切诺夫聚变协议,根据相邻机器人自己的测量和估计来估计特征分布。我们证明,根据这种分散式聚变协议,每个机器人的特征分布几乎可以肯定地与地面真实分布汇合。我们通过数字模拟来核实这一结果,表明估计的和地面真实分布之间的格灵格距离会与每个机器人的时间相趋同为零。我们还通过软件-In-Loop (SITL) 模拟模型验证了我们的策略,即通过搜索封闭式方格以在离散圆上分布的一组视觉特征的微粒子。