In Nonequilibrium Thermodynamics and Information Theory, the relative entropy (or, KL divergence) plays a very important role. Consider a H\"older Jacobian $J$ and the Ruelle (transfer) operator $\mathcal{L}_{\log J}.$ Two equilibrium probabilities $\mu_1$ and $\mu_2$, can interact via a discrete-time {\it Thermodynamic Operation} described by the action {\it of the dual of the Ruelle operator} $ \mathcal{L}_{\log J}^*$. We argue that the law $\mu \to \mathcal{L}_{\log J}^*(\mu)$, producing nonequilibrium, can be seen as a Thermodynamic Operation after showing that it's a manifestation of the Second Law of Thermodynamics. We also show that the change of relative entropy satisfies $$ D_{K L} (\mu_1,\mu_2) - D_{K L} (\mathcal{L}_{\log J}^*(\mu_1),\mathcal{L}_{\log J}^*(\mu_2))= 0.$$ Furthermore, we describe sufficient conditions on $J,\mu_1$ for getting $h(\mathcal{L}_{\log J}^*(\mu_1))\geq h(\mu_1)$, where $h$ is entropy. Recalling a natural Riemannian metric in the Banach manifold of H\"older equilibrium probabilities we exhibit the second-order Taylor formula for an infinitesimal tangent change of KL divergence; a crucial estimate in Information Geometry. We introduce concepts like heat, work, volume, pressure, and internal energy, which play here the role of the analogous ones in Thermodynamics of gases. We briefly describe the MaxEnt method.


翻译:在 Nonequiliblium 热力学和信息理论中, 相对的恒温值( 或, KL 差异) 扮演着非常重要的角色 。 我们认为H\" older Jacobian $J$ 和Ruelle( 传输) 运算 $\ mathcal{L\ log J}. 美元 两个平衡概率 $\ mu_ 1美元 和 $\ mu_ 2美元 。 在显示它代表热力学第二定律之后, 可以通过一个离散时间“ 热力操作 ” 来互动 。 由 Ruele 操作的双倍动作来描述 $ ( 或, 或, KL 差 ) $ ( mu_ ) 美元 。 我们认为, 法律 $\ commusal =L\ ral_ mologal_ mologyal_ ral_ $1, ral\\\\\\\\\\\\\ ma\ rodeal deal disal_ rational_ rational_ ral_ ral_ ral_ ral_ ral_ ral_ a_ h_ ral_ ral_ h_ h_ l_ l_ ral_ ral_ i) i) ral_ disal_ h_ h_ i) i) ral_ ral_ h=xxxxxxxxxxx= a a 。 我们。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
77+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员