Forecasts of the trajectory of an infectious agent can help guide public health decision making. A traditional approach to forecasting fits a computational model to structured data and generates a predictive distribution. However, human judgment has access to the same data as computational models plus experience, intuition, and subjective data. We propose a chimeric ensemble -- a combination of computational and human judgment forecasts -- as a novel approach to predicting the trajectory of an infectious agent. Each month from January, 2021 to June, 2021 we asked two generalist crowds, using the same criteria as the COVID-19 Forecast Hub, to submit a predictive distribution over incident cases and deaths at the US national level either two or three weeks into the future and combined these human judgment forecasts with forecasts from computational models submitted to the COVID-19 Forecasthub into a chimeric ensemble. We find a chimeric ensemble compared to an ensemble including only computational models improves predictions of incident cases and shows similar performance for predictions of incident deaths. A chimeric ensemble is a flexible, supportive public health tool and shows promising results for predictions of the spread of an infectious agent.


翻译:传染病剂的轨迹预测可以帮助指导公共卫生决策。一种传统的预测方法可以使计算模型适合结构化数据,并产生预测性分布。然而,人类判断可以使用与计算模型相同的数据以及经验、直觉和主观数据。我们提出了一个奇幻合奏 -- -- 结合计算和人类判断预测 -- -- 作为预测传染病剂轨迹的新办法。从2021年1月至2021年6月,我们每个月都要求两个普通人群,使用与COVID-19预报枢纽相同的标准,向未来两三个星期的美国国家一级事件和死亡的预测分布,并将这些人类判断预测与从提交COVID-19预报的计算模型的预测合并成一个奇幻合奏。我们发现一种奇异组合,与一个共奏相比,我们发现一种奇异的组合,仅包括计算模型,可以改进对事故案例的预测,并显示类似事件死亡预测的性能。一个奇美联奏是一个灵活、支持性的公共卫生工具,并展示了预测的传染性结果。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
征稿 | 国际KG大会IJCKG 2021投稿延期!推荐 SCI 一区期刊
开放知识图谱
0+阅读 · 2021年9月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
15+阅读 · 2021年2月19日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
征稿 | 国际KG大会IJCKG 2021投稿延期!推荐 SCI 一区期刊
开放知识图谱
0+阅读 · 2021年9月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员