Metaphoric glyphs enhance the readability and learnability of abstract glyphs used for the visualization of quantitative multidimensional data by building upon graphical entities that are intuitively related to the underlying problem domain. Their construction is, however, a predominantly manual process. In this paper, we introduce the Glyph-from-Icon (GfI) approach that allows the automated generation of metaphoric glyphs from user specified icons. Our approach modifies the icon's visual appearance using up to seven quantifiable visual variables, three of which manipulate its geometry while four affect its color. Depending on the visualization goal, specific combinations of these visual variables define the glyphs's variables used for data encoding. Technically, we propose a diffusion-curve based parametric icon representation, which comprises the degrees-of-freedom related to the geometric and color-based visual variables. Moreover, we extend our GfI approach to achieve scalability of the generated glyphs. Based on a user study we evaluate the perception of the glyph's main variables, i.e., amplitude and frequency of geometric and color modulation, as function of the stimuli and deduce functional relations as well as quantization levels to achieve perceptual monotonicity and readability. Finally, we propose a robustly perceivable combination of visual variables, which we apply to the visualization of COVID-19 data.
翻译:etophoric glyphs 提高了用于量化多维数据的可视化的抽象图形的可读性和可读性, 3个可量化可视变量在4个影响其颜色的情况下操作其几何。 根据可视化目标, 这些可视变量的具体组合决定了数据编码中使用的可视变量。 然而, 它们的构造是一个主要是手工的过程。 在本文中, 我们引入了 Glyph- From- Icon (GfI) 方法, 通过用户指定的图标自动生成隐喻语( GfI) 。 此外, 我们的方法调整了图标的视觉外观外观, 使用最多7个可量化可量化的可视变量, 其中3个在4个影响其颜色时操作了它的几何图形。 根据可视化目标, 这些可视变量的具体组合决定了数据编码中使用的可视变量。 从技术上看, 我们提出了一个基于扩散- colorvi- colorvey 的参数, 包括与基于地貌和颜色的可读性, 我们的可读性、 度的可变性、可变性、可变性、可变性、可变性、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判、可判的等等等等等等等等等等等等等等等。