In this paper, we develop a new neural network family based on power series expansion, which is proved to achieve a better approximation accuracy comparing to existing neural networks. This new set of neural networks can improve the expressive power while preserving comparable computational cost by increasing the degree of the network instead of increasing the depth or width. Numerical results have shown the advantage of this new neural network.
翻译:在本文中,我们开发了一个新的基于电力序列扩展的神经网络大家庭,这证明能够比现有的神经网络更近似精确。 这套新的神经网络可以通过提高网络的深度而不是增加深度或宽度来保持可比较的计算成本,从而改善表达力。 数字结果显示了这一新神经网络的优势。