Primal logic arose in access control; it has a remarkably efficient (linear time) decision procedure for its entailment problem. But primal logic is a general logic of information. In the realm of arbitrary items of information (infons), conjunction, disjunction, and implication may seem to correspond (set-theoretically) to union, intersection, and relative complementation. But, while infons are closed under union, they are not closed under intersection or relative complementation. It turns out that there is a systematic transformation of propositional intuitionistic calculi to the original (propositional) primal calculi; we call it Flatting. We extend Flatting to quantifier rules, obtaining arguably the right quantified primal logic, QPL. The QPL entailment problem is exponential-time complete, but it is polynomial-time complete in the case, of importance to applications (at least to access control), where the number of quantifiers is bounded.
翻译:暂无翻译