To solve the access-balancing problem in distributed storage systems, we introduce a new combinatorial model, called MinVar model for fractional repetition (FR) codes. Since FR codes are based on graphs or set systems, our MinVar model is characterized by the property that the variance among the sums of block-labels incident to a fixed vertex is minimized. This characterization is different from Dau and Milenkovic's MaxMinSum model, while the minimum sum of labels is maximized. We show that our MinVar model is meaningful by distinguishing labelings with different variances but with the same MaxMin value for some FR codes. By reformulating the MinVar model to an equivalent vertex-labeling problem of graphs, we find several families of optimal FR codes with balanced access frequency, and provide fundamental results for both problems. It is interesting that MinVar model is closely related to the concept of magic-labeling in graph theory.
翻译:为了解决分布式存储系统中的存取平衡问题, 我们引入了一个新的组合模型, 称为 MinVar, 用于分数重复代码。 由于 FR 代码以图形或设置系统为基础, 我们的 MinVar 模式的特征是块标签事件数量与固定顶点之间的差异最小化。 这个特性与 Dau 和 Milinkovic 的 MaxMinSum 模式不同, 而标签的最小和最小总和是最大化的。 我们显示我们的 MinVar 模式通过区分不同差异的标签而具有意义, 但与某些 FR 代码的 MaxMin 值相同。 通过将 MinVar 模式重新定位为等量的图形顶点标签问题, 我们发现几个具有平衡访问频率的最佳 FR 代码的组合, 为这两个问题提供了基本结果 。 有趣的是, MinVar 模式与图形理论中的魔术标签概念密切相关 。