Climate change is increasing the frequency and severity of harmful algal blooms (HABs), which cause significant fish deaths in aquaculture farms. This contributes to ocean pollution and greenhouse gas (GHG) emissions since dead fish are either dumped into the ocean or taken to landfills, which in turn negatively impacts the climate. Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope. This is a time-consuming, tedious and error-prone process, resulting in compromised management decisions by farmers. Hence, automating this process for quick and accurate HAB monitoring is extremely helpful. However, this requires large and diverse datasets of phytoplankton images, and such datasets are hard to produce quickly. In this work, we explore the feasibility of generating novel high-resolution photorealistic synthetic phytoplankton images, containing multiple species in the same image, given a small dataset of real images. To this end, we employ Generative Adversarial Networks (GANs) to generate synthetic images. We evaluate three different GAN architectures: ProjectedGAN, FastGAN, and StyleGANv2 using standard image quality metrics. We empirically show the generation of high-fidelity synthetic phytoplankton images using a training dataset of only 961 real images. Thus, this work demonstrates the ability of GANs to create large synthetic datasets of phytoplankton from small training datasets, accomplishing a key step towards sustainable systematic monitoring of harmful algal blooms.
翻译:造成水产养殖业大量鱼类死亡的有害藻华(藻华)的频率和严重程度正在增加,气候变化正在增加,造成养殖场有害藻华(藻华)的频率和严重性,这导致海洋污染和温室气体排放,因为死鱼被倾倒到海洋或填埋场,这反过来又对气候产生不利影响。目前,计算有害藻类和其他植物浮游生物的标准方法是手工观测和在显微镜下计数。这是一个耗时、乏味和易出错的过程,导致农民做出错误的管理决定。因此,对快速和准确监测藻类的流程进行自动化是非常有益的。然而,这需要大规模和多样的植物浮游生物图像的系统化数据集,而这种数据集很难迅速生成。在这项工作中,我们探索了制作新型高分辨率高分辨率光学合成浮游生物图像的可行性,其中含有多种物种,而真实图像的缩放量很小。为此,我们利用Genealation Adversarial网络(GANs)生成合成图像。我们评估了三种不同的GAN结构:对GANAN、FastGAN、FastGAN、SyAN和SyangangangangangAto图像的系统质量进行大规模分析,我们只能用高度数据显示高度数据显示。