Object detection involves two sub-tasks, i.e. localizing objects in an image and classifying them into various categories. For existing CNN-based detectors, we notice the widespread divergence between localization and classification, which leads to degradation in performance. In this work, we propose a mutual learning framework to modulate the two tasks. In particular, the two tasks are forced to learn from each other with a novel mutual labeling strategy. Besides, we introduce a simple yet effective IoU rescoring scheme, which further reduces the divergence. Moreover, we define a Spearman rank correlation-based metric to quantify the divergence, which correlates well with the detection performance. The proposed approach is general-purpose and can be easily injected into existing detectors such as FCOS and RetinaNet. We achieve a significant performance gain over the baseline detectors on the COCO dataset.


翻译:物体探测涉及两个子任务,即将物体在图像中定位并将其分为不同类别。对于现有的有线电视新闻网探测器,我们注意到定位和分类之间的差别很大,导致性能下降。在这项工作中,我们提议了一个相互学习的框架,以调整这两项任务。特别是,这两项任务被迫用一种新的共同标签战略相互学习。此外,我们引入了一个简单而有效的IOU重新组合计划,进一步缩小了差异。此外,我们定义了Spearman级的基于相关等级的指数,以量化差异,这与探测性能密切相关。拟议的方法是通用的,可以很容易地注入现有的探测器,如FCOS和Retinnet。我们比CO数据集的基准探测器取得了很大的绩效收益。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年3月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
5+阅读 · 2018年4月17日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员