Coupled dynamical systems are frequently observed in nature, but often not well understood in terms of their causal structure without additional domain knowledge about the system. Especially when analyzing observational time series data of dynamical systems where it is not possible to conduct controlled experiments, for example time series of climate variables, it can be challenging to determine how features causally influence each other. There are many techniques available to recover causal relationships from data, such as Granger causality, convergent cross mapping, and causal graph structure learning approaches such as PCMCI. Path signatures and their associated signed areas provide a new way to approach the analysis of causally linked dynamical systems, particularly in informing a model-free, data-driven approach to algorithmic causal discovery. With this paper, we explore the use of path signatures in causal discovery and propose the application of confidence sequences to analyze the significance of the magnitude of the signed area between two variables. These confidence sequence regions converge with greater sampling length, and in conjunction with analyzing pairwise signed areas across time-shifted versions of the time series, can help identify the presence of lag/lead causal relationships. This approach provides a new way to define the confidence of a causal link existing between two time series, and ultimately may provide a framework for hypothesis testing to define whether one time series causes another


翻译:动态系统在性质上经常被观察到,但往往没有很好地理解其因果结构,而没有系统的额外领域知识。特别是在分析动态系统的观察时间序列数据时,如果无法进行控制实验,例如气候变量的时间序列,那么确定因果特征如何相互影响则具有挑战性。从数据中恢复因果关系的可用技术很多,如:因果因果关系、交错绘图和因果图形结构学习方法,如PCMCI。路径签名及其相关签名区域为分析因果关联的动态系统提供了新的途径,特别是在为逻辑性因果发现提供无模式、数据驱动的方法时段数据时段数据时段数据时段数据时段数据时段数据时段数据的分析方面。我们探讨在因果发现中使用路径签名的方法,并提议应用信任序列来分析两个变量之间所签区域的规模。这些信任序列区域与较大的采样长度相融合,并与对称的时间序列不同区域进行分析,有助于确定因果关联的因果关系的存在。这一方法提供了一种新的方法,用以界定一个时间序列是否最终将现有因果因果关系框架联系起来。

0
下载
关闭预览

相关内容

专知会员服务
91+阅读 · 2021年8月28日
专知会员服务
14+阅读 · 2021年5月21日
【WWW2021】对众包系统的数据中毒攻击和防御
专知会员服务
20+阅读 · 2021年2月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2020年3月19日
VIP会员
相关VIP内容
专知会员服务
91+阅读 · 2021年8月28日
专知会员服务
14+阅读 · 2021年5月21日
【WWW2021】对众包系统的数据中毒攻击和防御
专知会员服务
20+阅读 · 2021年2月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员