All physical laws are described as relationships between state variables that give a complete and non-redundant description of the relevant system dynamics. However, despite the prevalence of computing power and AI, the process of identifying the hidden state variables themselves has resisted automation. Most data-driven methods for modeling physical phenomena still assume that observed data streams already correspond to relevant state variables. A key challenge is to identify the possible sets of state variables from scratch, given only high-dimensional observational data. Here we propose a new principle for determining how many state variables an observed system is likely to have, and what these variables might be, directly from video streams. We demonstrate the effectiveness of this approach using video recordings of a variety of physical dynamical systems, ranging from elastic double pendulums to fire flames. Without any prior knowledge of the underlying physics, our algorithm discovers the intrinsic dimension of the observed dynamics and identifies candidate sets of state variables. We suggest that this approach could help catalyze the understanding, prediction and control of increasingly complex systems. Project website is at: https://www.cs.columbia.edu/~bchen/neural-state-variables
翻译:所有的物理法律都被描述为能够完整和完整地描述相关系统动态的状态变量之间的关系。然而,尽管计算机动力和AI的流行程度,查明隐藏状态变量的过程本身已经无法自动化。大多数物理现象模型模型化的数据驱动方法仍然假设观测到的数据流已经符合相关的状态变量。一个关键的挑战是如何确定从零到零的可能的状态变量组合,只给出高维观测数据。我们在这里提出了一个新原则,用于确定一个被观测到的系统可能有多少状态变量,以及这些变量可能直接来自视频流。我们用从弹性的双钟到火焰等各种物理动态系统的视频记录来展示这一方法的有效性。我们的算法在不事先了解基本物理学的情况下,发现所观测到的动态的内在层面,并找出候选的状态变量组。我们建议,这种方法可以帮助催化对日益复杂的系统的理解、预测和控制。项目网站为:https://www.columbia.edu/ ~neural-state-variables。