Recently, the problem of inaccurate learning targets in crowd counting draws increasing attention. Inspired by a few pioneering work, we solve this problem by trying to predict the indices of pre-defined interval bins of counts instead of the count values themselves. However, an inappropriate interval setting might make the count error contributions from different intervals extremely imbalanced, leading to inferior counting performance. Therefore, we propose a novel count interval partition criterion called Uniform Error Partition (UEP), which always keeps the expected counting error contributions equal for all intervals to minimize the prediction risk. Then to mitigate the inevitably introduced discretization errors in the count quantization process, we propose another criterion called Mean Count Proxies (MCP). The MCP criterion selects the best count proxy for each interval to represent its count value during inference, making the overall expected discretization error of an image nearly negligible. As far as we are aware, this work is the first to delve into such a classification task and ends up with a promising solution for count interval partition. Following the above two theoretically demonstrated criterions, we propose a simple yet effective model termed Uniform Error Partition Network (UEPNet), which achieves state-of-the-art performance on several challenging datasets. The codes will be available at: https://github.com/TencentYoutuResearch/CrowdCounting-UEPNet.
翻译:最近,在人群计数中的不准确学习目标问题引起了越来越多的关注。 受一些开创性工作的启发, 我们试图通过预测预定义的计数间隔箱的指数而不是计数值本身来解决这个问题。 但是, 不适当的间隔设置可能会使不同间隔的计数错误贡献极不平衡, 导致计算性能低劣。 因此, 我们提出一个新的计数间隔标准, 称为“ 统一错误分区 ” ( UEP), 该标准将所有间隔的预期计数错误贡献都保持在相等的水平上, 以尽量减少预测性风险 。 然后, 为了减轻计算性能分解过程中不可避免的引入的离散错误错误, 我们提议了另一个标准, 称为“ 平均计数” ( MCP ) 。 MCP 标准为每个间隔选择了最好的计数代理, 以显示其计算值, 使一个图像的总体预期的离散错误几乎可以忽略不计数 。 据我们所知, 这项工作是第一个切入这样的分类任务, 并最后为计数间隔分配带来希望的解决方案 。 按照以上两个理论上显示的标准, 我们提议一个简单有效的模型, 称为“ 统一错误分隔网格网络 ” (UPNet ),,,, 将实现一些州/ Rest- co/ Rest 。