Learning representations that accurately capture long-range dependencies in sequential inputs -- including text, audio, and genomic data -- is a key problem in deep learning. Feed-forward convolutional models capture only feature interactions within finite receptive fields while recurrent architectures can be slow and difficult to train due to vanishing gradients. Here, we propose Temporal Feature-Wise Linear Modulation (TFiLM) -- a novel architectural component inspired by adaptive batch normalization and its extensions -- that uses a recurrent neural network to alter the activations of a convolutional model. This approach expands the receptive field of convolutional sequence models with minimal computational overhead. Empirically, we find that TFiLM significantly improves the learning speed and accuracy of feed-forward neural networks on a range of generative and discriminative learning tasks, including text classification and audio super-resolution
翻译:精确地捕捉相继输入(包括文字、音频和基因组数据)中长期依赖性的学习表现,是深层学习的一个关键问题。进进进进进进进进进进进进式模型只捕捉有限的可接受字段中的特征互动,而由于渐变梯度的消失,经常性建筑可能缓慢而难于培训。在这里,我们提议了时间地貌-Wise线性移动(TFILM) -- -- 适应性批次正常化及其扩展所启发的新型建筑组成部分 -- -- 利用一个经常性神经网络来改变动态模型的激活。这个方法扩大了具有最低计算中位的进进式序列模型的可接受领域。我们经常发现TFILM大大提高了进进进取神经网络的学习速度和精度,涉及一系列有差别和歧视性的学习任务,包括文字分类和音频超分辨率。