This paper tackles the problem of semi-supervised learning when the set of labeled samples is limited to a small number of images per class, typically less than 10, problem that we refer to as barely-supervised learning. We analyze in depth the behavior of a state-of-the-art semi-supervised method, FixMatch, which relies on a weakly-augmented version of an image to obtain supervision signal for a more strongly-augmented version. We show that it frequently fails in barely-supervised scenarios, due to a lack of training signal when no pseudo-label can be predicted with high confidence. We propose a method to leverage self-supervised methods that provides training signal in the absence of confident pseudo-labels. We then propose two methods to refine the pseudo-label selection process which lead to further improvements. The first one relies on a per-sample history of the model predictions, akin to a voting scheme. The second iteratively updates class-dependent confidence thresholds to better explore classes that are under-represented in the pseudo-labels. Our experiments show that our approach performs significantly better on STL-10 in the barely-supervised regime, e.g. with 4 or 8 labeled images per class.
翻译:本文处理当标签样本组限于每类少量图像时的半监督学习问题, 通常不到10个, 我们称之为几乎无人监督的学习问题。 我们深入分析了最先进的半监督方法FixMatch的行为, 这种方法依赖微弱的图像放大版来获得强化版本的监督信号。 我们显示, 由于缺乏培训信号, 无法以高度信心预测假标签, 因而在几乎无人监督的情景中经常失败。 我们建议了一种在缺乏自信的假标签的情况下利用自我监督方法提供培训信号的方法。 我们随后提出了两种方法来改进伪标签选择过程, 从而导致进一步的改进。 第一个方法依赖于模型预测的每幅样本历史, 类似于投票计划。 第二个反复更新了依赖类信任阈值, 以更好地探索伪标签中代表不足的类别。 我们的实验显示, 我们的方法在标准L- 10 4 或最低等级的SOL- 10 中, 显示我们的方法在标准 STL- 10 中, 几乎每类的标签每类中表现得更好。