Isotropic covariance structures can be unreasonable for phenomena in three-dimensional spaces. We construct a class of non-stationary anisotropic Gaussian random fields (GRFs) in three dimensions through stochastic partial differential equations allowing for Gaussian Markov random field approximations. The class is proven in a simulation study where we explore the amount of data required to estimate these models. Then, we apply it to an ocean mass outside Trondheim, Norway, based on simulations from a numerical ocean model. And our model outperforms a stationary anisotropic GRF on predictions using in-situ measurements collected with an autonomous underwater vehicle.
翻译:对三维空间的现象来说,同源体结构可能是不合理的。 我们通过可允许高山Markov随机场近近的随机部分偏差方程式,在三个维度上建造了一组非静止的高斯罗原随机场(GRFs ) 。 模拟研究证明了这一类,我们探索了估算这些模型所需的数据数量。 然后,我们根据数字海洋模型的模拟,将其应用到挪威特隆海姆以外的海洋质量上。 我们的模型在使用自主水下潜水器收集的地表测量方法进行预测方面,超过了固定的GRFs。