Machine learning and specifically reinforcement learning (RL) has been extremely successful in helping us to understand neural decision making processes. However, RL's role in understanding other neural processes especially motor learning is much less well explored. To explore this connection, we investigated how recent deep RL methods correspond to the dominant motor learning framework in neuroscience, error-based learning. Error-based learning can be probed using a mirror reversal adaptation paradigm, where it produces distinctive qualitative predictions that are observed in humans. We therefore tested three major families of modern deep RL algorithm on a mirror reversal perturbation. Surprisingly, all of the algorithms failed to mimic human behaviour and indeed displayed qualitatively different behaviour from that predicted by error-based learning. To fill this gap, we introduce a novel deep RL algorithm: model-based deterministic policy gradients (MB-DPG). MB-DPG draws inspiration from error-based learning by explicitly relying on the observed outcome of actions. We show MB-DPG captures (human) error-based learning under mirror-reversal and rotational perturbation. Next, we demonstrate error-based learning in the form of MB-DPG learns faster than canonical model-free algorithms on complex arm-based reaching tasks, while being more robust to (forward) model misspecification than model-based RL. These findings highlight the gap between current deep RL methods and human motor adaptation and offer a route to closing this gap, facilitating future beneficial interaction between between the two fields.


翻译:(RL) 在帮助我们理解神经决策过程的过程中,基于错误的机器学习和具体的强化学习(RL)在帮助我们理解神经决策过程方面非常成功。然而,对于RL在理解其他神经过程,特别是运动学习过程中的作用的探讨却少得多。为了探索这一联系,我们调查了最近深入的RL方法如何与神经科学、基于错误的学习中占主导地位的运动学习框架相对应。基于错误的学习可以使用镜反向适应模式进行考察,从而产生在人身上观察到的独特质量预测。因此,我们在镜反反振动突扰动中测试了现代深层RL算法的三个主要家庭。令人惊讶的是,所有算法都未能模仿人类行为,而且确实展示出与基于错误的与基于错误的另一种行为不同的行为。为了填补这一空白,我们引入了一个全新的RL算法:基于模型的确定性梯度(MB-DPG),这些M-DPG从基于错误的学习中汲取灵感,明确依靠观察到的模型的距离。我们展示了基于MB-DPG的基于人类的路径在镜反反反向和旋转的周期间进行深度的深度的路径上的学习。我们展示了在目前快速的模型和旋转的模型中较快速的轨道上可以学习一个基于错误的方法。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员