In this paper, we propose and analyze an adaptive time-stepping fully discrete scheme which possesses the optimal strong convergence order for the stochastic nonlinear Schr\"odinger equation with multiplicative noise. Based on the splitting skill and the adaptive strategy, the $H^1$-exponential integrability of the numerical solution is obtained, which is a key ingredient to derive the strong convergence order. We show that the proposed scheme converges strongly with orders $\frac12$ in time and $2$ in space. To investigate the numerical asymptotic behavior, we establish the large deviation principle for the numerical solution. This is the first result on the study of the large deviation principle for the numerical scheme of stochastic partial differential equations with superlinearly growing drift. And as a byproduct, the error of the masses between the numerical and exact solutions is finally obtained.
翻译:在本文中,我们建议并分析一个适应性的时间跨度完全独立的计划,它拥有以多倍噪音生成的随机非线性非线性Schr\\'ddinger等式的最佳强烈趋同顺序。根据分解技巧和适应策略,获得了数字解决方案的耗尽性软性,这是得出强烈趋同顺序的一个关键要素。我们显示,拟议的计划与一个时间为$\frac12$和空间为$2$的订单紧密结合。为了调查数字性非线性行为,我们为数字解决方案制定了一个很大的偏差原则。这是研究具有超线性增长漂移的随机性部分差异方程式数字公式的大型偏差原则的第一个结果。作为副产品,最终得出了数字式和精确解决方案之间的质量误差。