Channel charting is a self-supervised learning technique whose objective is to reconstruct a map of the radio environment, called channel chart, by taking advantage of similarity relationships in high-dimensional channel state information. We provide an overview of processing steps and evaluation methods for channel charting and propose a novel dissimilarity metric that takes into account angular-domain information as well as a novel deep learning-based metric. Furthermore, we suggest a method to fuse dissimilarity metrics such that both the time at which channels were measured as well as similarities in channel state information can be taken into consideration while learning a channel chart. By applying both classical and deep learning-based manifold learning to a dataset containing sub-6GHz distributed massive MIMO channel measurements, we show that our metrics outperform previously proposed dissimilarity measures. The results indicate that the new metrics improve channel charting performance, even under non-line-of-sight conditions.
翻译:暂无翻译