The Automatic Identification System (AIS) enables data-driven maritime surveillance but suffers from reliability issues and irregular intervals. We address vessel destination estimation using global-scope AIS data by proposing a differentiated approach that recasts long port-to-port trajectories as a nested sequence structure. Using spatial grids, this method mitigates spatio-temporal bias while preserving detailed resolution. We introduce a novel deep learning architecture, WAY, designed to process these reformulated trajectories for long-term destination estimation days to weeks in advance. WAY comprises a trajectory representation layer and Channel-Aggregative Sequential Processing (CASP) blocks. The representation layer generates multi-channel vector sequences from kinematic and non-kinematic features. CASP blocks utilize multi-headed channel- and self-attention for aggregation and sequential information delivery. Additionally, we propose a task-specialized Gradient Dropout (GD) technique to enable many-to-many training on single labels, preventing biased feedback surges by stochastically blocking gradient flow based on sample length. Experiments on 5-year AIS data demonstrate WAY's superiority over conventional spatial grid-based approaches regardless of trajectory progression. Results further confirm that adopting GD leads to performance gains. Finally, we explore WAY's potential for real-world application through multitask learning for ETA estimation.


翻译:自动识别系统(AIS)支持数据驱动的海上监视,但存在可靠性问题和间隔不规则性。我们通过提出一种差异化方法,将长距离港到港轨迹重构为嵌套序列结构,以利用全球范围AIS数据进行船舶目的地估计。该方法采用空间网格化处理,在保持精细分辨率的同时缓解时空偏差。我们提出了一种新颖的深度学习架构WAY,专为处理这些重构后的轨迹而设计,可提前数天至数周进行长期目的地估计。WAY由轨迹表示层和通道聚合序列处理(CASP)模块组成。表示层从运动学与非运动学特征生成多通道向量序列。CASP模块利用多头通道注意力与自注意力机制实现信息聚合与序列传递。此外,我们提出了一种任务专用的梯度丢弃(GD)技术,通过在单标签上实现多对多训练,依据样本长度随机阻断梯度流,从而避免有偏反馈激增。基于五年AIS数据的实验表明,无论轨迹进展阶段如何,WAY均优于传统基于空间网格的方法。结果进一步证实采用GD技术可带来性能提升。最后,我们通过ETA估计的多任务学习探讨了WAY在实际应用中的潜力。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
【CVPR2023】DynamicDet:目标检测的统一动态架构
专知会员服务
26+阅读 · 2023年4月15日
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
33+阅读 · 2022年3月18日
时空数据挖掘:综述
专知
34+阅读 · 2022年6月30日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
时空数据挖掘:综述
专知
34+阅读 · 2022年6月30日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员