Due to the limitations of a single autonomous vehicle, Cellular Vehicle-to-Everything (C-V2X) technology opens a new window for achieving fully autonomous driving through sensor information sharing. However, real-world datasets supporting vehicle-infrastructure cooperative navigation in complex urban environments remain rare. To address this gap, we present UrbanV2X, a comprehensive multisensory dataset collected from vehicles and roadside infrastructure in the Hong Kong C-V2X testbed, designed to support research on smart mobility applications in dense urban areas. Our onboard platform provides synchronized data from multiple industrial cameras, LiDARs, 4D radar, ultra-wideband (UWB), IMU, and high-precision GNSS-RTK/INS navigation systems. Meanwhile, our roadside infrastructure provides LiDAR, GNSS, and UWB measurements. The entire vehicle-infrastructure platform is synchronized using the Precision Time Protocol (PTP), with sensor calibration data provided. We also benchmark various navigation algorithms to evaluate the collected cooperative data. The dataset is publicly available at https://polyu-taslab.github.io/UrbanV2X/.
翻译:由于单一自动驾驶车辆的局限性,蜂窝车联网(C-V2X)技术为通过传感器信息共享实现完全自动驾驶开启了新的窗口。然而,支持复杂城市环境中车路协同导航的真实世界数据集仍然稀缺。为填补这一空白,我们提出了UrbanV2X,这是一个从香港C-V2X测试场的车辆和路侧基础设施收集的综合性多传感器数据集,旨在支持密集城市区域智能出行应用的研究。我们的车载平台提供了来自多个工业相机、激光雷达、4D雷达、超宽带(UWB)、惯性测量单元(IMU)以及高精度GNSS-RTK/INS导航系统的同步数据。同时,我们的路侧基础设施提供了激光雷达、GNSS和UWB测量数据。整个车路平台使用精确时间协议(PTP)进行同步,并提供了传感器标定数据。我们还对各种导航算法进行了基准测试,以评估所收集的协同数据。该数据集已在 https://polyu-taslab.github.io/UrbanV2X/ 公开提供。