Active learning aims to select the most informative samples to exploit limited annotation budgets. Most existing work follows a cumbersome pipeline by repeating the time-consuming model training and batch data selection multiple times on each dataset separately. We challenge this status quo by proposing a novel general and efficient active learning (GEAL) method in this paper. Utilizing a publicly available model pre-trained on a large dataset, our method can conduct data selection processes on different datasets with a single-pass inference of the same model. To capture the subtle local information inside images, we propose knowledge clusters that are easily extracted from the intermediate features of the pre-trained network. Instead of the troublesome batch selection strategy, all data samples are selected in one go by performing K-Center-Greedy in the fine-grained knowledge cluster level. The entire procedure only requires single-pass model inference without training or supervision, making our method notably superior to prior arts in terms of time complexity by up to hundreds of times. Extensive experiments widely demonstrate the promising performance of our method on object detection, semantic segmentation, depth estimation, and image classification.
翻译:积极学习的目的是选择信息最丰富的样本,以利用有限的批注预算。大多数现有工作都遵循繁琐的管道,在每套数据集中重复耗时的模型培训和分批数据选择多次。我们通过在本文中提出一种新的通用和高效积极学习方法来质疑现状。利用在大型数据集上预先培训过的公开模型,我们的方法可以对不同数据集进行数据选择过程,同时对同一模型进行单方推理。为了捕捉图像中微妙的当地信息,我们建议从培训前网络的中间特征中轻易提取到知识组群。我们提出的知识组群,不是麻烦的批次选择战略,而是通过在细化的知识组群中进行K-Center-Greedy(Geedy)测试,所有数据样本都是一次性选择的。整个程序只需要在没有培训或监督的情况下进行单方推理模型,我们的方法在时间复杂性方面明显优于前科,多达数百次。广泛的实验广泛展示了我们在物体探测、语义分割、深度估计和图像分类方面有前途的方法。