Existing studies on semantic parsing focus primarily on mapping a natural-language utterance to a corresponding logical form in one turn. However, because natural language can contain a great deal of ambiguity and variability, this is a difficult challenge. In this work, we investigate an interactive semantic parsing framework that explains the predicted logical form step by step in natural language and enables the user to make corrections through natural-language feedback for individual steps. We focus on question answering over knowledge bases (KBQA) as an instantiation of our framework, aiming to increase the transparency of the parsing process and help the user appropriately trust the final answer. To do so, we construct INSPIRED, a crowdsourced dialogue dataset derived from the ComplexWebQuestions dataset. Our experiments show that the interactive framework with human feedback has the potential to greatly improve overall parse accuracy. Furthermore, we develop a pipeline for dialogue simulation to evaluate our framework w.r.t. a variety of state-of-the-art KBQA models without involving further crowdsourcing effort. The results demonstrate that our interactive semantic parsing framework promises to be effective across such models.
翻译:关于语义拼法的现有研究主要侧重于绘制一种自然语言的表达方式,使其达到相应的逻辑形式。然而,由于自然语言可以包含大量模糊性和多变性,这是一个困难的挑战。在这项工作中,我们调查了一个互动的语义拼法框架,它以自然语言一步步地解释预测的逻辑形式,使用户能够通过自然语言反馈对各个步骤进行校正。我们侧重于对知识基础(KBQA)的回答问题,作为我们框架的即时解答,目的是提高剖析过程的透明度,并帮助用户适当信任最终答案。为了做到这一点,我们建立了来自复杂网络问题数据集的众包对话数据集IMSPIRED。我们的实验表明,与人类反馈的互动框架有可能大大改善总体的偏差准确性。此外,我们开发了对话模拟管道,用以评价我们的框架 w.r.t. 以及各种最新的KBQA模型,而不涉及进一步的人群外包努力。结果表明,我们的交互式语义拼法框架承诺在各种模型之间产生效力。