Choral music separation refers to the task of extracting tracks of voice parts (e.g., soprano, alto, tenor, and bass) from mixed audio. The lack of datasets has impeded research on this topic as previous work has only been able to train and evaluate models on a few minutes of choral music data due to copyright issues and dataset collection difficulties. In this paper, we investigate the use of synthesized training data for the source separation task on real choral music. We make three contributions: first, we provide an automated pipeline for synthesizing choral music data from sampled instrument plugins within controllable options for instrument expressiveness. This produces an 8.2-hour-long choral music dataset from the JSB Chorales Dataset and one can easily synthesize additional data. Second, we conduct an experiment to evaluate multiple separation models on available choral music separation datasets from previous work. To the best of our knowledge, this is the first experiment to comprehensively evaluate choral music separation. Third, experiments demonstrate that the synthesized choral data is of sufficient quality to improve the model's performance on real choral music datasets. This provides additional experimental statistics and data support for the choral music separation study.


翻译:声乐分离是指从混合音频中提取音频部件的轨迹(如高音、高音、高音、低音和低音)的任务。缺乏数据集阻碍了对这一专题的研究,因为先前的工作只能培训和评价关于由于版权问题和数据收集困难而导致的几分钟的彩色音乐数据的模型。在本文件中,我们调查了在真实声乐中源分离任务中使用综合培训数据的情况。我们做出了三项贡献:首先,我们为在可控仪器表达性选项内将抽样仪器插件的声乐数据合成而提供了自动管道。这产生了来自JSB Chorales Data的8.2小时长的声乐数据集,而其中一人可以很容易地综合补充更多的数据。第二,我们进行了一项实验,以评价关于现有声乐分离数据集的多种分离模型。我们最了解的是,这是对声乐分离进行全面评估的第一次实验。第三,实验表明合成声乐数据的质量足以改进模型在真实音乐分离方面的性能。本实验性数据提供了额外数据支持。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月19日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员