Collecting a large number of reliable training images annotated by multiple land-cover class labels in the framework of multi-label classification is time-consuming and costly in remote sensing (RS). To address this problem, publicly available thematic products are often used for annotating RS images with zero-labeling-cost. However, such an approach may result in constructing a training set with noisy multi-labels, distorting the learning process. To address this problem, we propose a Consensual Collaborative Multi-Label Learning (CCML) method. The proposed CCML identifies, ranks and corrects training images with noisy multi-labels through four main modules: 1) discrepancy module; 2) group lasso module; 3) flipping module; and 4) swap module. The discrepancy module ensures that the two networks learn diverse features, while obtaining the same predictions. The group lasso module detects the potentially noisy labels by estimating the label uncertainty based on the aggregation of two collaborative networks. The flipping module corrects the identified noisy labels, whereas the swap module exchanges the ranking information between the two networks. The experimental results confirm the success of the proposed CCML under high (synthetically added) multi-label noise rates. The code of the proposed method is publicly available at https://noisy-labels-in-rs.org


翻译:在多标签分类的框架内,收集大量可靠的培训图像,并用多标签分类框架的多覆盖类标签加以附加说明,这是费时和费钱的。为了解决这一问题,通常使用公开可得的专题产品,用零标签成本对RS图像进行注解。然而,这种办法可能导致建造一套使用吵闹的多标签的培训,扭曲学习过程。为了解决这一问题,我们提议采用一个协同合作多标签学习(CCML)方法。拟议的CCML通过四个主要模块识别、排行和校正多标签对图像的培训:1个差异模块;2个群体 lasso模块;3个翻转模块;和4个交换模块。差异模块确保两个网络学习不同的特征,同时获得相同的预测。群体lasso模块通过估算基于两个协作网络组合的标签不确定性来检测潜在的噪音标签。翻转模块纠正了已查明的噪音标签,而交换模块则通过两个网络之间的排名交换信息。实验结果证实,拟议的CCMLMLA-ML在高标准下的成功率(httpsyntroal-labals)。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
【ICML2020-华为港科大】RNN和LSTM有长期记忆吗?
专知会员服务
77+阅读 · 2020年6月25日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
模式国重实验室21篇论文入选CVPR 2020
专知
30+阅读 · 2020年3月8日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Multi-Label Learning with Label Enhancement
Arxiv
4+阅读 · 2019年4月16日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
模式国重实验室21篇论文入选CVPR 2020
专知
30+阅读 · 2020年3月8日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员