A \emph{spanner} of a graph $G$ is a subgraph $H$ that approximately preserves shortest path distances in $G$. Spanners are commonly applied to compress computation on metric spaces corresponding to weighted input graphs. Classic spanner constructions can seamlessly handle edge weights, so long as error is measured \emph{multiplicatively}. In this work, we investigate whether one can similarly extend constructions of spanners with purely \emph{additive} error to weighted graphs. These extensions are not immediate, due to a key lemma about the size of shortest path neighborhoods that fails for weighted graphs. Despite this, we recover a suitable amortized version, which lets us prove direct extensions of classic $+2$ and $+4$ unweighted spanners (both all-pairs and pairwise) to $+2W$ and $+4W$ weighted spanners, where $W$ is the maximum edge weight. Specifically, we show that a weighted graph $G$ contains all-pairs (pairwise) $+2W$ and $+4W$ weighted spanners of size $O(n^{3/2})$ and $\widetilde{O}(n^{7/5})$ ($O(np^{1/3})$ and $O(np^{2/7})$) respectively. For a technical reason, the $+6$ unweighted spanner becomes a $+8W$ weighted spanner; closing this error gap is an interesting remaining open problem. That is, we show that $G$ contains all-pairs (pairwise) $+8W$ weighted spanners of size $O(n^{4/3})$ ($O(np^{1/4})$).
翻译:$G$ 的 \ emph{ spanner} 是一个位数 $H 美元, 它大约保存了最短的路程距离 $G$ 。 Spananers 通常用于在与加权输入图相对应的空格上压缩计算 。 经典的 spanner 构造可以天衣无缝地处理边缘重量, 只要测量出错误, 只要测量到 \ emph{ 倍复制} 。 在这项工作中, 我们调查一个人是否可以同样地将宽幅的建筑扩展为纯\ emph{ addivis} 美元到加权的图形。 这些扩展不是立即的, 因为一个关于最短路径区域大小的关键 lemma $8_ 美元 。 尽管如此, 我们回收了一个合适的 折叠版版本, 它让我们证明经典的$+2美元和$+4美元( 双重) 宽度的( $2美元) 和 宽度的宽度问题( $_ p) a. 我们显示一个加权的G$ $+美元 美元 美元 美元 美元 美元 。 a_ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2