Consider the identification (ID) via channels problem, where a receiver wants to decide whether the transmitted identifier is its identifier, rather than decoding the identifier. This model allows to transmit identifiers whose size scales doubly-exponentially in the blocklength, unlike common transmission (or channel) codes whose size scales exponentially. It suffices to use binary constant-weight codes (CWCs) to achieve the ID capacity. By relating the parameters of a binary CWC to the minimum distance of a code and using higher-order correlation moments, two upper bounds on the binary CWC size are proposed. These bounds are shown to be upper bounds also on the identifier sizes for ID codes constructed by using binary CWCs. We propose two code constructions based on optical orthogonal codes, which are used in optical multiple access schemes, have constant-weight codewords, and satisfy cyclic cross-correlation and auto-correlation constraints. These constructions are modified and concatenated with outer Reed-Solomon codes to propose new binary CWCs optimal for ID. Improvements to the finite-parameter performance of both our and existing code constructions are shown by using outer codes with larger minimum distance vs. blocklength ratios. We also illustrate ID performance regimes for which our ID code constructions perform significantly better than existing constructions.
翻译:(ID) 通过频道问题来考虑识别(ID) 问题, 接收者想在其中决定传输的识别符号是否是其识别符号, 而不是解码识别符号。 这个模型允许传输其尺寸在块状长度中以二倍速度显示的识别符号, 不同于普通传输( 或频道) 的代码, 其大小指数指数指数指数指数指数指数指数指数指数是指数指数指数指数指数指数指数的。 只需使用二进制的常量代码( CWC) 就可以实现身份识别能力。 通过将《化学武器公约》的二进制参数与代码的最小距离相联系, 并使用更高级的关联时间点, 就可以在《化学武器公约》的二进制尺寸上提出两个上限。 这些界限也显示在使用二进制化的代码构建ID码的识别符号大小上也具有上限值。 我们提出了基于光学或多进制代码的两套代码代码代码代码代码, 并且用我们现有设计中最强的硬度标准模型来显示。