Suppose $A=\{a_1,\ldots,a_{n+2}\}\subset\mathbb{Z}^n$ has cardinality $n+2$, with all the coordinates of the $a_j$ having absolute value at most $d$, and the $a_j$ do not all lie in the same affine hyperplane. Suppose $F=(f_1,\ldots,f_n)$ is an $n\times n$ polynomial system with generic integer coefficients at most $H$ in absolute value, and $A$ the union of the sets of exponent vectors of the $f_i$. We give the first algorithm that, for any fixed $n$, counts exactly the number of real roots of $F$ in in time polynomial in $\log(dH)$.


翻译:假设$A_1,\ldots,a ⁇ n+2 ⁇ subset\mathb ⁇ n$具有最主要价值$n+2美元,所有坐标均以$a_j$的绝对值以美元为单位,而$a_j$并不全部位于同一个方形高空。假设$F=(f_1,\ldots,f_n)是按绝对值计算具有通用总计系数最高为$H的多元货币体系,而$A$则以美元为单位。我们给出的第一个算法是,对于任何固定的美元,精确计算成美元时的美元实际根数,以美元(dH)为单位。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
8+阅读 · 2019年6月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月1日
Arxiv
0+阅读 · 2021年2月26日
Arxiv
0+阅读 · 2021年2月26日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
8+阅读 · 2019年6月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员