Parallel-in-time methods, such as multigrid reduction-in-time (MGRIT) and Parareal, provide an attractive option for increasing concurrency when simulating time-dependent PDEs in modern high-performance computing environments. While these techniques have been very successful for parabolic equations, it has often been observed that their performance suffers dramatically when applied to advection-dominated problems or purely hyperbolic PDEs using standard rediscretization approaches on coarse grids. In this paper, we apply MGRIT or Parareal to the constant-coefficient linear advection equation, appealing to existing convergence theory to provide insight into the typically non-scalable or even divergent behavior of these solvers for this problem. To overcome these failings, we replace rediscretization on coarse grids with improved coarse-grid operators that are computed by applying optimization techniques to approximately minimize error estimates from the convergence theory. One of our main findings is that, in order to obtain fast convergence as for parabolic problems, coarse-grid operators should take into account the behavior of the hyperbolic problem by tracking the characteristic curves. Our approach is tested for schemes of various orders using explicit or implicit Runge-Kutta methods combined with upwind-finite-difference spatial discretizations. In all cases, we obtain scalable convergence in just a handful of iterations, with parallel tests also showing significant speed-ups over sequential time-stepping. Our insight of tracking characteristics on coarse grids provides a key idea for solving the long-standing problem of efficient parallel-in-time integration for hyperbolic PDEs.


翻译:在现代高性能计算环境中模拟基于时间的 PDE 时,多格里德减少时间(MGRIT) 和 Parareal 等平行时间方法为在模拟现代高性能计算环境中基于时间的 PDE 模拟时增加调值提供了一种有吸引力的选择。虽然这些方法对于抛线方程式非常成功,但人们经常发现,当应用在粗略网格上的标准再分解方法,如对倾斜主导问题或纯超双曲线PDE 时,其性能会受到极大的影响。在本文中,我们将MGRIT 或Pararealalality应用于持续高效的线性线性倾销方程式,呼吁现有的趋同理论,以便了解这些解决问题的解决方案通常无法伸缩,甚至不同的行为。为了克服这些缺陷,我们用改进的粗略网格操作器来进行再分解,通过优化技术来尽可能减少对粗略网格电网格进行误估。我们的主要发现之一是,为了在解决对parcolcolal 问题取得快速的趋同, 网络操作者应该考虑到我们通过跟踪各种惯性递离式的双向系统系统系统系统进行快速递增的递合的递定的轨问题的行为。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
已删除
将门创投
6+阅读 · 2019年1月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月23日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
已删除
将门创投
6+阅读 · 2019年1月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员