In this paper, we introduce a new concept, namely $\epsilon$-arithmetics, for real vectors of any fixed dimension. The basic idea is to use vectors of rational values (called rational vectors) to approximate vectors of real values of the same dimension within $\epsilon$ range. For rational vectors of a fixed dimension $m$, they can form a field that is an $m$th order extension $\mathbf{Q}(\alpha)$ of the rational field $\mathbf{Q}$ where $\alpha$ has its minimum polynomial of degree $m$ over $\mathbf{Q}$. Then, the arithmetics, such as addition, subtraction, multiplication, and division, of real vectors can be defined by using that of their approximated rational vectors within $\epsilon$ range. We also define complex conjugate of a real vector and then inner products for two real vectors and two real vector sequences of the same length.
翻译:在本文中,我们引入了一个新的概念, 即$\ expslon$- arithmetics, 对任何固定维度的真正矢量, 即 $\ epslon$- arphmetics。 基本的想法是使用理性值的矢量( 所谓的理性矢量) 来接近 $\ efslon$ 范围内 同一维度的真实矢量的矢量。 对于固定维度的理性矢量的理性矢量, $, 它们可以形成一个以$mm$为顺序的字段, $\ mathb_ (\ alpha)$, 合理字段的值为$\ mathb_ $, 即 $ 为 $\ alpha$ 的最小多元度 $m$ 超过 mathbf_ $ 。 然后, 实际矢量的计算方法, 如增加、 减量、 倍增量和分数, 和分数, 可以确定真实矢量范围内 $\ 。 我们还定义了两个真实矢量矢量的矢量的内 。