Pairwise comparison matrices have received substantial attention in a variety of applications, especially in rank aggregation, the task of flattening items into a one-dimensional (and thus transitive) ranking. However, non-transitive preference cycles can arise in practice due to the fact that making a decision often requires a complex evaluation of multiple factors. In some applications, it may be important to identify and preserve information about the inherent non-transitivity, either in the pairwise comparison data itself or in the latent feature space. In this work, we develop structured models for non-transitive pairwise comparison matrices that can be exploited to recover such matrices from incomplete noisy data and thus allow the detection of non-transitivity. Considering that individuals' tastes and items' latent features may change over time, we formulate time-varying pairwise comparison matrix recovery as a dynamic skew-symmetric matrix recovery problem by modeling changes in the low-rank factors of the pairwise comparison matrix. We provide theoretical guarantees for the recovery and numerically test the proposed theory with both synthetic and real-world data.


翻译:在各种应用中,尤其是等级汇总中,对称比较矩阵在各种应用中受到大量注意,特别是将物品平整成一维(因而具有过渡性)等级的任务,然而,由于作出决定往往需要对多种因素进行复杂的评估,在实践中可能出现非过渡性优惠周期;在有些应用中,在对称比较数据本身或潜在特征空间中,确定和保存关于内在的非透明度的信息可能很重要;在这项工作中,我们为非透明对称比较矩阵制定了结构化模型,可以利用这些模型从不完整的噪音数据中恢复这种矩阵,从而能够发现非透明性;考虑到个人的口味和物品的潜在特征可能随时间变化而变化,我们通过模拟对称比较矩阵中低等级因素的变化,将矩阵的恢复作为动态的对称矩阵恢复问题,我们为恢复提供理论保证,并以合成数据和实际数据对拟议理论进行数字测试。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年8月12日
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
8+阅读 · 2018年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月14日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年8月12日
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
8+阅读 · 2018年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员