A novel method is proposed for detecting changes in the covariance structure of moderate dimensional time series. This non-linear test statistic has a number of useful properties. Most importantly, it is independent of the underlying structure of the covariance matrix. We discuss how results from Random Matrix Theory, can be used to study the behaviour of our test statistic in a moderate dimensional setting (i.e. the number of variables is comparable to the length of the data). In particular, we demonstrate that the test statistic converges point wise to a normal distribution under the null hypothesis. We evaluate the performance of the proposed approach on a range of simulated datasets and find that it outperforms a range of alternative recently proposed methods. Finally, we use our approach to study changes in the amount of water on the surface of a plot of soil which feeds into model development for degradation of surface piping.
翻译:提出了一种新的方法来探测中维时间序列共变结构的变化。 这种非线性测试统计具有若干有用的特性。 最重要的是, 它独立于共变矩阵的基本结构。 我们讨论如何用随机矩阵理论的结果在中维环境中研究我们测试统计的行为方式( 即变量数量与数据长度相当) 。 特别是, 我们证明, 测试统计会指向无效假设下的正常分布。 我们评估了一系列模拟数据集的拟议方法的性能, 发现它超越了最近提出的一系列替代方法。 最后, 我们用我们的方法研究土壤表面水量的变化, 土壤土壤的土壤形成模型, 用于地表管道退化的模型开发 。