Dialogue act recognition is an important part of natural language understanding. We investigate the way dialogue act corpora are annotated and the learning approaches used so far. We find that the dialogue act is context-sensitive within the conversation for most of the classes. Nevertheless, previous models of dialogue act classification work on the utterance-level and only very few consider context. We propose a novel context-based learning method to classify dialogue acts using a character-level language model utterance representation, and we notice significant improvement. We evaluate this method on the Switchboard Dialogue Act corpus, and our results show that the consideration of the preceding utterances as a context of the current utterance improves dialogue act detection.
翻译:对话行为承认是自然语言理解的一个重要部分。我们调查对话行为社团是如何加注的,以及迄今为止所采用的学习方法。我们发现,对话行为在大多数阶层的谈话中具有背景敏感性。然而,以前的对话模式对言论进行分类工作,但很少考虑背景。我们提出一种新的基于背景的学习方法,利用品格水平语言示范表达方式对对话行为进行分类,我们注意到显著的改进。我们在“交换板对话法”中评估了这一方法,我们的结果表明,将前述言论视为当前言论的背景,可以改善对话行为探测。