In this paper, we study the computational complexity of the quadratic unconstrained binary optimization (QUBO) problem under the functional problem FP^NP categorization. We focus on four sub-classes: (1) When all coefficients are integers QUBO is FP^NP-complete. (2) When every coefficient is an integer lower bounded by a constant k, QUBO is FP^NP[log]-complete. (3) When every coefficient is an integer upper bounded by a constant k, QUBO is again FP^NP[log]-complete. (4) When coefficients can only be in the set {1, 0, -1}, QUBO is FP^NP[log]-complete. With recent results in quantum annealing able to solve QUBO problems efficiently, our results provide a clear connection between quantum annealing algorithms and the FP^NP complexity class categorization. We also study the computational complexity of the decision version of the QUBO problem with integer coefficients. We prove that this problem is DP-complete.
翻译:在本文中,我们研究了功能问题FPNP分类中四种不受限制的二进制优化(QUBO)问题的计算复杂性。我们侧重于四个子类:(1) 当所有系数均为整数时,QUBO是完整的。(2) 当每个系数为整数,但受常数 k 所约束的整数,QUBO是完全的。(3) 当每个系数为整数,但受常数 k 所约束时,QUBO还是FPNP[log]-完成。(4) 当系数只能在设定的 {1,0,-1}时,QUBO是全数。最近,量射精度的结果能够有效解决QUBO问题,我们的结果提供了量射算算算法和FPNP的复杂等级分类之间的明确联系。我们还研究了QUBO问题决定版本与整数的计算复杂性。我们证明这个问题是DP的完成。