We study distributed computing of the truncated singular value decomposition problem. We develop an algorithm that we call \texttt{LocalPower} for improving communication efficiency. Specifically, we uniformly partition the dataset among $m$ nodes and alternate between multiple (precisely $p$) local power iterations and one global aggregation. In the aggregation, we propose to weight each local eigenvector matrix with orthogonal Procrustes transformation (OPT). As a practical surrogate of OPT, sign-fixing, which uses a diagonal matrix with $\pm 1$ entries as weights, has better computation complexity and stability in experiments. We theoretically show that under certain assumptions \texttt{LocalPower} lowers the required number of communications by a factor of $p$ to reach a constant accuracy. We also show that the strategy of periodically decaying $p$ helps obtain high-precision solutions. We conduct experiments to demonstrate the effectiveness of \texttt{LocalPower}.
翻译:我们研究分配单值分解问题。 我们开发了一种算法, 我们称之为\ textt{ 本地Power} 来提高通信效率。 具体地说, 我们统一将数据集分割在 $m 节点之间, 并在多个( 精确的 $ p 美元 ) 本地电源循环和一个全球集合之间进行交替 。 在汇总中, 我们提议以正方正方形分解变( OPT) 来加权计算每个本地电子元矩阵的重量。 作为 OPM 的实际替代方, 符号固定, 使用 $\ pm 1 条目的对角矩阵作为重量, 在实验中可以更好地计算复杂性和稳定性 。 我们理论上显示, 在某些假设下, \ textt{ 本地Police} 将所需的通信量降低1 倍, 以达到恒定的精确度。 我们还表明, 定期衰减 $p 有助于获得高精度解决方案 。 我们进行实验以证明\ textt{ 当地Power} 的有效性 。