We study distributed computing of the truncated singular value decomposition problem. We develop an algorithm that we call \texttt{LocalPower} for improving communication efficiency. Specifically, we uniformly partition the dataset among $m$ nodes and alternate between multiple (precisely $p$) local power iterations and one global aggregation. In the aggregation, we propose to weight each local eigenvector matrix with orthogonal Procrustes transformation (OPT). As a practical surrogate of OPT, sign-fixing, which uses a diagonal matrix with $\pm 1$ entries as weights, has better computation complexity and stability in experiments. We theoretically show that under certain assumptions \texttt{LocalPower} lowers the required number of communications by a factor of $p$ to reach a constant accuracy. We also show that the strategy of periodically decaying $p$ helps obtain high-precision solutions. We conduct experiments to demonstrate the effectiveness of \texttt{LocalPower}.


翻译:我们研究分配单值分解问题。 我们开发了一种算法, 我们称之为\ textt{ 本地Power} 来提高通信效率。 具体地说, 我们统一将数据集分割在 $m 节点之间, 并在多个( 精确的 $ p 美元 ) 本地电源循环和一个全球集合之间进行交替 。 在汇总中, 我们提议以正方正方形分解变( OPT) 来加权计算每个本地电子元矩阵的重量。 作为 OPM 的实际替代方, 符号固定, 使用 $\ pm 1 条目的对角矩阵作为重量, 在实验中可以更好地计算复杂性和稳定性 。 我们理论上显示, 在某些假设下, \ textt{ 本地Police} 将所需的通信量降低1 倍, 以达到恒定的精确度。 我们还表明, 定期衰减 $p 有助于获得高精度解决方案 。 我们进行实验以证明\ textt{ 当地Power} 的有效性 。

0
下载
关闭预览

相关内容

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。
专知会员服务
41+阅读 · 2021年4月2日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
已删除
将门创投
4+阅读 · 2020年6月12日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年7月26日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
已删除
将门创投
4+阅读 · 2020年6月12日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员