The number of Internet of Things (IoT) deployments is expected to reach 75.4 billion by 2025. Roughly 70% of all IoT devices employ weak or no encryption; thus, putting them and their connected infrastructure at risk of attack by devices that are wrongly authenticated or not authenticated at all. A physical layer security approach -- known as Specific Emitter Identification (SEI) -- has been proposed and is being pursued as a viable IoT security mechanism. SEI is advantageous because it is a passive technique that exploits inherent and distinct features that are unintentionally added to the signal by the IoT Radio Frequency (RF) front-end. SEI's passive exploitation of unintentional signal features removes any need to modify the IoT device, which makes it ideal for existing and future IoT deployments. Despite the amount of SEI research conducted, some challenges must be addressed to make SEI a viable IoT security approach. One challenge is the extraction of SEI features from signals collected under multipath fading conditions. Multipath corrupts the inherent SEI features that are used to discriminate one IoT device from another; thus, degrading authentication performance and increasing the chance of attack. This work presents two semi-supervised Deep Learning (DL) equalization approaches and compares their performance with the current state of the art. The two approaches are the Conditional Generative Adversarial Network (CGAN) and Joint Convolutional Auto-Encoder and Convolutional Neural Network (JCAECNN). Both approaches learn the channel distribution to enable multipath correction while simultaneously preserving the SEI exploited features. CGAN and JCAECNN performance is assessed using a Rayleigh fading channel under degrading SNR, up to thirty-two IoT devices, and two publicly available signal sets. The JCAECNN improves SEI performance by 10% beyond that of the current state of the art.


翻译:预计到2025年,物联网(IoT)的部署数量将达到754亿。大约70%的所有IoT设备采用弱加密或没有加密; 因此,将它们及其连接的基础设施置于错误身份验证或根本没有身份验证的设备攻击风险之下。已经提出并正在追求一种称为特定发射器识别(SEI)的物理层安全方法,作为可行的IoT安全机制。 SEI具有优势,是因为它是一种被动技术,利用物联网无线电频率(RF)前端意外添加的固有和独特的特征。由于SEI对意外信号特征的被动利用,因此不需要修改物联网设备,这使其对现有和未来的IoT部署非常理想。尽管进行了大量的SEI研究,但仍需解决一些挑战,以使SEI成为一种可行的IoT安全方法。其中一个挑战是从在多径衰落条件下收集的信号中提取SEI特征。多径损坏用于区分一个IoT设备和另一个IoT设备的固有SEI特征,从而降低身份验证性能并增加攻击的机会。本文提出了两种半监督深度学习(DL)均衡方法,并将其与当前技术水平进行了比较。这两种方法是条件生成敌对网络(CGAN)和联合卷积自动编码器和卷积神经网络(JCAECNN)。这两种方法都学习信道分布,以实现多径校正,同时保留利用的SEI特征。采用瑞利衰落信道,在降低SNR的情况下,使用多达32个IoT设备和两组公开信号集评估CGAN和JCAECNN的性能。 JCAECNN将SEI性能提高了10%,超出了目前技术水平。

0
下载
关闭预览

相关内容

[NeurIPS 2020] 球形嵌入的深度度量学习
专知会员服务
17+阅读 · 2020年11月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】在CPU上进行实时无监督单目深度估计
泡泡机器人SLAM
17+阅读 · 2019年5月10日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月21日
VIP会员
相关VIP内容
[NeurIPS 2020] 球形嵌入的深度度量学习
专知会员服务
17+阅读 · 2020年11月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】在CPU上进行实时无监督单目深度估计
泡泡机器人SLAM
17+阅读 · 2019年5月10日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员