This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well. Code: \url{https://github.com/zhangzjn/EMO}
翻译:本文侧重于设计低参数的有效模型和用于密集预测的 FLOP 。 即使基于CNN的轻量级方法在多年研究后取得了惊人的成果, 交易模式的准确性和受限资源仍需要进一步改进。 这项工作重新思考了移动Netv2 中高效的倒置残余块和有效变形器在ViT 中的基本统一性, 吸收了Meta- Mobile Blub的一般概念, 我们争辩说, 特定的即时性对于模拟性能非常重要, 虽然共享相同的框架。 受此现象的启发, 我们推导出一个简单而有效的现代高效的Nylebf{I}, 交易型号为: Textb{right\ textb{I} nnverb{ textb{right{Ritef{Right} Eleftble:MIMO=lightal 75-MOlock (iRMO) 和MRM- IM- IMA 的 Rioality 20 标准。 我们的 RM- 20 和 RB- 的 RE- AS AS 的 RB- seral- AS 的 Ral- AS AS AS AS AS 的 Ral press press 和 Ral- AS AS AS 的模型, press supal/ supal press press press press press press press press 和 Ral_ IM IM 的 Ral- sal- sal- sal- sal- sal_ AS press press press press press press pressal_ pressal_ AS AS press press pral_ Pro 的 Ral_ 的 Ral_ Pro press press pral_ press 和 mal_ press pressal- sal_ E. s real- sal_ E.